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C O R R I G E N D U M

Radial pulsations of a fluid sphere in a sound wave

By S. Temkin

Journal of Fluid Mechanics, vol. 380 (1999), pp. 1–38

I am indebted to Professor Prosperetti and to Dr Ren for finding a significant error
in my detailed analysis of the temperature and pressure fluctuations in a pulsating
particle. As they point out, the error invalidates the results of that analysis for
the temperature fluctuations in gas bubbles. Those results are withdrawn. The error
also affects, although in a less significant manner, the results for the temperature
fluctuations in pulsating liquid drops with specific heat ratio significantly different
from 1. This includes the droplets chosen to illustrate the results, namely toluene
droplets. However, correct results for both bubbles and droplets may be easily obtained
and this is done here.

The error found by Prosperetti and Ren (see Prosperetti & Ren 2001) exists in both
the internal and external solutions, but because the external fluid is in both cases
a liquid having a very small value of (γf − 1), the error has no effect there. Thus,
fortuitously, the external solution is valid, provided the correct values of the interfacial
temperature and pressure fluctuations are used. In addition, the simple solution
presented in Appendix B, as well as the general expressions for derived quantities,
such as those for the energy dissipation rates and the attenuation coefficients, are
not affected by the error, provided, again, that the values of the temperature and
pressure ratios appearing in them are properly evaluated. This is done below for both
drops and bubbles by complementing the analysis of Appendix B with the polytropic
approximation. The required steps are straightforward. First we note that when the
external pressure fluctuations are retained, the derivative of the external temperature
evaluated at the interface can be obtained from (5.1), which gives, instead of (B8),(

∂τf
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)
1

= (1− Ts)(1− iq) + (1−Πs)(1− ib). (1)

Following the procedure used in Appendix B, (1) can be used to obtain the average
and surface temperature. The results are, with Πs = Π ,
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{Π(1− ξ)− (Π − 1)[1 + (1− ib)/(1− iq)]}, (2)
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G(qi)

F
{Π(1− ξ)− (Π − 1)[1 + (1− ib)/(1− iq)]}. (3)

The second term inside the curly brackets may be regarded as the correction to the
internal temperature that arises owing to the pressure disturbance in the external
fluid. For bubbles in liquids, the correction term is negligible because of the very large
value of ξ applicable to them. For droplets in liquids, where ξ can be order one, the
magnitude of the second term can be evaluated by the use of a pressure disturbance
in the external fluid that is based on isothermal conditions there. That calculation
shows that the correction term in (2) and (3) can also be neglected for droplets.
This means that, so far as the temperature is concerned, the pressure disturbance is
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Figure 1. Values of (κr/ζ − 1)/(γp − 1) and of |κi|/ζ for a 100 micron diameter air bubble (ζ = 1)
in water. ———, Present results; · · · · · ·, Prosperetti & Ren (2001).

negligible for both bubbles and droplets. Thus,
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F
(ξ − 1). (4a, b)

These can be used to show that, contrary to what is displayed in my earlier figures
2 and 8(b), the average particle temperature is, at all frequencies but the smallest,
significantly larger than the surface temperature. In fact, in the case of bubbles in
water, the ratio |Ts/T |, as given by (4a, b) is nearly equal to that shown by Prosperetti
& Ren (2001) in their figure 2.

Now, to obtain the particle’s average temperature via (4a) we require the pressure
ratio Π. This is done by means of the harmonic-oscillator model under the polytropic
approximation. First, we define a complex polytropic index for pulsating particles,
using (2.6) instead of the corresponding perfect-gas relation. Thus, instead of (4.9) we
now have the more general result

κ = ζ

(
1− (γp − 1)

γpξ

T

Π

)−1

, (5)

where ζ = ρp0c
2
sp/γpp0, a quantity which reduces to unity for perfect gases. Figure 1

shows the quantities |κi|/ζ and (κr/ζ − 1)/(γp − 1) for an air bubble in water. The
corresponding graph for toluene droplets in water is similar and is not shown to save
space. Figure 1 also shows Properetti’s results (Prosperetti 1977) for both quantities.
It is seen that both sets of results agree closely for values of zp of order one or larger.
At lower frequencies, differences exist owing to the neglect, in Prosperetti’s theory,
of the temperature fluctuations in the external fluid. I should add that experimental
confirmation of Prosperetti’s result for the real part of the polytropic index had been
reported some time ago by Crum (1982) in one of the papers I missed when writing
mine. Other important papers I missed are listed in Prosperetti & Ren (2001).

The remaining steps in the calculation of the complex-pressure ratio, Π , are also
straightforward, and only a sketch is presented here. Thus, the displacement of the
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Figure 2. Scaled attenuation, α/f2 × 1017 s2 cm−1, in an emulsion of toluene droplets. D = 0.7 µm,
φv = 0.2. N, Allegra & Hawley. The lines represent dilute attenuation theories: — · · — · · —,
translational; – – – – – –, acoustic; · · · · · · · · ·, thermal, present results; −−−−, thermal, Epstein &
Carhart; ——— total attenuation.

interface under a harmonic force that includes the externally applied pressure P ′f as
well as the fluid’s reaction to the particle’s pulsations, is found to be

ε = −(4πa2/M0ω
2
0)χP ′f, (6)

where χ = [1− (ω/ω0)
2 − id̂]−1 is the displacement-response function for the particle,

d̂ = d̂th + d̂ac is the total, non-dimensional damping coefficient when viscosity is ne-

glected, d̂th = |κi|/κr and d̂ac = b(ω/ω2
0) are, respectively, the thermal and acoustic

damping coefficients, M0 = 4πρf0a
2/(1 + b2) is the induced interfacial mass, which is

due to the incompressible part of the fluid’s reaction on the pulsating particle, and
ω0 is the dissipationless resonance frequency, which is given by

ω2
0 = ω2

T0(1 + b2)κr/ζ. (7)

Finally, the fluctuating pressure in the pulsating particle is obtained from the linearized
polytropic relation p̄′p = −3p0κε/a. This gives

Π = (1− id̂th)χ. (8)

This completes the solution for both bubbles and droplets. Because the harmonic
model has not been used in the past to study the pulsational response, to sound waves,
of droplets in liquids, it is of interest to assess its validity. To do this, we compute the
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contribution to the sound attenuation coefficient in a dilute emulsion arising from
the pulsational motion, namely acoustic and thermal attenuations, using the above
results. The working equations are still, respectively, (7.2) and (7.4) of my 1999 paper.
(Incidentally, the front factor on the right-hand side of (7.2) should be 3/2b.) As figure
2 shows, the present results provide a better agreement with the experimental data of
Allegra & Hawley (1972) than the earlier results. Also shown in the figure is Epstein
& Carhart’s (1953) thermal attenuation. It is seen that thermal attenuation computed
from the harmonic model theory agrees well with it, except at high frequencies where
the effects of droplet compressibility play a more important role.

To conclude it might be useful to state that my detailed analysis in my 1999 paper
applies only when both internal and external fluids have specific heat ratios very
nearly equal to one. Thus that analysis does not apply to gas bubbles and to droplets
that have a large specific heat ratio. For these the corrections given here may be used.
I should also state that my incorrect results have been used in a more recent paper
(Temkin 2000). Thus, the same corrections apply there.
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